Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.
نویسندگان
چکیده
We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.
منابع مشابه
Ionic Coulomb Blockade and Resonant Conduction in Biological Ion Channels
The conduction and selectivity of calcium/sodium ion channels are described in terms of ionic Coulomb blockade, a phenomenon based on charge discreteness and an electrostatic model of an ion channel. This novel approach provides a unified explanation of numerous observed and modelled conductance and selectivity phenomena, including the anomalous mole fraction effect and discrete conduction band...
متن کاملModeling of ion permeation in calcium and sodium channel selectivity filters.
Structure-function studies have shown that it is possible to convert a sodium channel to a calcium-selective channel by a single amino acid substitution in the selectivity filter locus. Ion permeation through the "model selectivity filter" was modeled with a reduced set of functional groups representative of the constituent amino acid side chains. Force-field minimizations were conducted to obt...
متن کاملتغییرات نوکلئوتیدی ژنهای CoxII، سیتوکروم b و tRNAGlu میتوکندریایی در بیماران ایرانی مبتلا به سندرم بروگادا (آریتمی قلبی)
Introduction: The Brugada syndrome (BrS) belongs to cardiac arrhythmia disorders that is seen on the echocardiogram bands and is a significant cause of sudden death in young adults. At the molecular level, mechanisms that contribute to BrS are mutations in genes that encode for ion channels. It has been reported that the activity of ion channels in cardiomyocytes is sensitive to ATP level. This...
متن کاملMulti-ion conduction bands in a simple model of calcium ion channels.
We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. With increasing Qf, there are distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of almost zer...
متن کاملEnergetics of ion competition in the DEKA selectivity filter of neuronal sodium channels
Energetics of ion competition in the DEKA selectivity filter of neuronal sodium channels D. Boda1∗, G. Leaf2, J. Fonseca3, B. Eisenberg4 1 Department of Physical Chemistry, University of Pannonia, P. O. Box 158, Veszprém, H-8201, Hungary 2 Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA 3 The Network for Computational Nanote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 5 شماره
صفحات -
تاریخ انتشار 2013